sheaf (Q2083): Difference between revisions

From MaRDI portal
Importer (talk | contribs)
Created a new Item
 
Importer (talk | contribs)
Changed an Item
 
Property / Freebase ID
 
/m/01kjmy
Property / Freebase ID: /m/01kjmy / rank
 
Normal rank
Property / Freebase ID: /m/01kjmy / reference
 
stated in: Freebase Data Dumps
publication date: 28 October 2013
Timestamp+2013-10-28T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0
Property / subclass of
 
Property / subclass of: presheaf / rank
 
Normal rank
Property / subclass of
 
Property / subclass of: stack / rank
 
Normal rank
Property / Encyclopædia Britannica Online ID
 
topic/sheaf
Property / Encyclopædia Britannica Online ID: topic/sheaf / rank
 
Normal rank
Property / Encyclopædia Britannica Online ID: topic/sheaf / qualifier
 
Property / Library of Congress authority ID
 
sh85121203
Property / Library of Congress authority ID: sh85121203 / rank
 
Normal rank
Property / Library of Congress authority ID: sh85121203 / reference
 
reference URL: https://github.com/JohnMarkOckerbloom/ftl/blob/master/data/wikimap
retrieved: 3 April 2019
Timestamp+2019-04-03T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0
Property / studied in
 
Property / studied in: sheaf theory / rank
 
Normal rank
Property / defining formula
 

\begin{align}&F\colon{\rm Open}(X)^{\rm op}\to{\rm Set}\\&U=\bigcup_{i\in I}U_i\land s,t\in F(U)\land(\forall i\in I\colon s\restriction U_i=t\restriction U_i)\implies s=t\\&U=\bigcup_{i\in I}U_i\land\forall i\in I\colon s_i\in F(U_i)\land\forall i,j\in I\colon s_i\restriction U_i\cap U_j=s_j\restriction U_i\cap U_j\implies\exists s\in F(U)\forall i\in I\colon s_i=s\restriction U_i\end{align}
Property / defining formula: / rank
 
Normal rank
Property / discoverer or inventor
 
Property / discoverer or inventor: Jean Leray / rank
 
Normal rank
Property / time of discovery or invention
 
1947
Timestamp+1947-00-00T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 year
Before0
After0
Property / time of discovery or invention: 1947 / rank
 
Normal rank
Property / Microsoft Academic ID
 
4017995
Property / Microsoft Academic ID: 4017995 / rank
 
Normal rank
Property / Microsoft Academic ID
 
118497674
Property / Microsoft Academic ID: 118497674 / rank
 
Normal rank
Property / has characteristic
 
Property / has characteristic: global section / rank
 
Normal rank
Property / has characteristic
 
Property / has characteristic: stalk / rank
 
Normal rank
Property / nLab ID
 
sheaf
Property / nLab ID: sheaf / rank
 
Normal rank
Property / National Library of Israel J9U ID
 
987007536441005171
Property / National Library of Israel J9U ID: 987007536441005171 / rank
 
Normal rank
Property / National Library of Israel J9U ID: 987007536441005171 / reference
 
Property / OpenAlex ID
 
C4017995
Property / OpenAlex ID: C4017995 / rank
 
Normal rank
Property / OpenAlex ID: C4017995 / reference
 
stated in: OpenAlex
retrieved: 26 January 2022
Timestamp+2022-01-26T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

reference URL: https://docs.openalex.org/download-snapshot/snapshot-data-format
Property / different from
 
Property / different from: sheaf / rank
 
Normal rank
Property / on focus list of Wikimedia project
 
Property / on focus list of Wikimedia project: Wikipedia:Vital articles/Level/4 / rank
 
Normal rank
Property / on focus list of Wikimedia project: Wikipedia:Vital articles/Level/4 / qualifier
 
point in time: 31 October 2022
Timestamp+2022-10-31T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0
Property / MathWorld ID
 
Sheaf
Property / MathWorld ID: Sheaf / rank
 
Normal rank
Property / ProofWiki ID
 
Definition:Sheaf_on_Topological_Space
Property / ProofWiki ID: Definition:Sheaf_on_Topological_Space / rank
 
Normal rank
Property / Encyclopedia of Mathematics article ID
 
Sheaf
Property / Encyclopedia of Mathematics article ID: Sheaf / rank
 
Normal rank
Property / PlanetMath ID
 
Sheaf1
Property / PlanetMath ID: Sheaf1 / rank
 
Normal rank

Latest revision as of 15:49, 29 July 2024

collection of objects associated to subsets of a space in a manner admitting gluing and restriction
Language Label Description Also known as
English
sheaf
collection of objects associated to subsets of a space in a manner admitting gluing and restriction

    Statements

    0 references
    0 references
    0 references
    0 references
    1947
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    /m/01kjmy
    1 reference
    topic/sheaf
    0 references
    4017995
    0 references
    118497674
    0 references
    sheaf
    0 references
    Sheaf
    0 references
    Definition:Sheaf_on_Topological_Space
    0 references
    Sheaf1
    0 references