Free Fall Equation (Air Drag) (Q3836): Difference between revisions
From MaRDI portal
Removed claim: Property:P842: 0 |
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align} |
||
(109 intermediate revisions by 3 users not shown) | |||
Property / defining formula | Property / defining formula | ||
m\dot{v}=mg-\frac{1}{2}\rho C_DAv^2 | \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align} | ||
Property / defining formula: / qualifier | |||
Property / defining formula: / reference | |||
Property / defining formula | |||
y(t)=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) | |||
Property / defining formula: / rank | |||
Property / Generalizes Formulation | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / rank | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
\rho \rightarrow 0 | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
C_D \rightarrow 0 | |||
Property / Generalizes Formulation | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / rank | |||
Normal rank | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
Latest revision as of 10:11, 10 October 2024
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language | Label | Description | Also known as |
---|---|---|---|
English | Free Fall Equation (Air Drag) |
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass. |