Free Fall Equation (Air Drag) (Q3836): Difference between revisions

From MaRDI portal
Removed claim: defining formula (P29): y(t)=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}
 
(104 intermediate revisions by 3 users not shown)
Property / defining formula
 

\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}
Property / defining formula: / rank
 
Normal rank
Property / defining formula: / qualifier
 
Property / defining formula: / reference
 
Property / Wikidata QID
 
Property / Wikidata QID: Q38083707 / rank
 
Normal rank
Property / community
 
Property / community: MathModDB / rank
 
Normal rank
Property / Generalizes Formulation
 
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / rank
 
Normal rank
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier
 
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier
 

Latest revision as of 10:11, 10 October 2024

Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language Label Description Also known as
English
Free Fall Equation (Air Drag)
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.

    Statements

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references