Free Fall Equation (Air Drag) (Q3836): Difference between revisions

From MaRDI portal
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}
 
(14 intermediate revisions by 2 users not shown)
Property / defining formulaProperty / defining formula

\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{align}

\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}
Property / community
 
Property / community: MathModDB / rank
 
Normal rank
Property / Generalizes Formulation
 
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / rank
 
Normal rank
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier
 
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier
 

Latest revision as of 10:11, 10 October 2024

Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language Label Description Also known as
English
Free Fall Equation (Air Drag)
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.

    Statements

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references