Free Fall Equation (Air Drag) (Q3836): Difference between revisions

From MaRDI portal
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ \end{align}
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}
 
Property / defining formulaProperty / defining formula

\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ \end{align}

\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align}

Latest revision as of 10:11, 10 October 2024

Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language Label Description Also known as
English
Free Fall Equation (Air Drag)
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.

    Statements

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references