j-invariant (Q1995): Difference between revisions

From MaRDI portal
Importer (talk | contribs)
Created a new Item
 
Importer (talk | contribs)
Changed an Item
 
Property / Freebase ID
 
/m/02b6jr
Property / Freebase ID: /m/02b6jr / rank
 
Normal rank
Property / Freebase ID: /m/02b6jr / reference
 
stated in: Freebase Data Dumps
publication date: 28 October 2013
Timestamp+2013-10-28T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0
Property / defining formula
 

j(τ)=(12(m,n)(0,0)(m+nτ)4)3((m,n)(0,0)(m+nτ)4)315(72(m,n)(0,0)(m+nτ)6)2

j(\tau)=\frac{\left(12\sum_{(m,n)\ne(0,0)}(m+n\tau)^{-4}\right)^3}{\left(\sum_{(m,n)\ne(0,0)}(m+n\tau)^{-4}\right)^3-\frac15\left(\frac72\sum_{(m,n)\ne(0,0)}(m+n\tau)^{-6}\right)^2}
Property / defining formula: j(τ)=(12(m,n)(0,0)(m+nτ)4)3((m,n)(0,0)(m+nτ)4)315(72(m,n)(0,0)(m+nτ)6)2 / rank
 
Normal rank
Property / MathWorld ID
 
j-Function
Property / MathWorld ID: j-Function / rank
 
Normal rank
Property / MathWorld ID: j-Function / reference
 
Property / instance of
 
Property / instance of: modular form / rank
 
Normal rank
Property / Microsoft Academic ID
 
7514240
Property / Microsoft Academic ID: 7514240 / rank
 
Normal rank
Property / nLab ID
 
j-invariant
Property / nLab ID: j-invariant / rank
 
Normal rank
Property / in defining formula
 

j

j
Property / in defining formula: j / rank
 
Normal rank
Property / in defining formula: j / qualifier
 
Property / definition domain
 
Property / definition domain: upper half-plane / rank
 
Normal rank
Property / image
 
Property / image: KleinInvariantJ.jpg / rank
 
Normal rank
Property / image
 
Property / image: J-inv-real.jpeg / rank
 
Normal rank
Property / image
 
Property / image: J-inv-phase.jpeg / rank
 
Normal rank

Latest revision as of 15:18, 29 July 2024

modular function of weight zero defined on the upper half-plane of complex numbers
  • modular j-invariant
  • J-invariant function
Language Label Description Also known as
default for all languages
No label defined
    English
    j-invariant
    modular function of weight zero defined on the upper half-plane of complex numbers
    • modular j-invariant
    • J-invariant function

    Statements

    j(τ)=(12(m,n)(0,0)(m+nτ)4)3((m,n)(0,0)(m+nτ)4)315(72(m,n)(0,0)(m+nτ)6)2
    0 references
    0 references
    KleinInvariantJ.jpg
    947 × 704; 324 KB
    0 references
    J-inv-real.jpeg
    600 × 600; 70 KB
    0 references
    J-inv-phase.jpeg
    600 × 600; 92 KB
    0 references

    Identifiers

    0 references
    /m/02b6jr
    1 reference
    7514240
    0 references
    j-invariant
    0 references