Free Fall Equation (Air Drag) (Q3836): Difference between revisions
From MaRDI portal
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{align} |
Changed claim: defining formula (P29): \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align} |
||
(17 intermediate revisions by 2 users not shown) | |||
Property / defining formula | Property / defining formula | ||
\begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{align} | \begin{align} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right)\\ v(t) &= v_{\infty}\tanh\left(\frac{gt}{v_{\infty}}\right) \end{align} | ||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
Property / Generalizes Formulation: Free Fall Equation (Vacuum) / qualifier | |||
Property / described at URL | |||
Property / described at URL: https://en.wikipedia.org/wiki/Free_fall / rank | |||
Latest revision as of 10:11, 10 October 2024
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language | Label | Description | Also known as |
---|---|---|---|
English | Free Fall Equation (Air Drag) |
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass. |