Free Fall Equation (Air Drag) (Q3836): Difference between revisions
From MaRDI portal
Changed claim: defining formula (P29): \begin{aligned} m\dot{v}&=&mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=&y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned} |
Changed claim: defining formula (P29): \begin{aligned} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned} Tag: Reverted |
||
Property / defining formula | Property / defining formula | ||
\begin{aligned} m\dot{v}&=&mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=&y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned} | \begin{aligned} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned} |
Revision as of 15:46, 30 September 2024
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language | Label | Description | Also known as |
---|---|---|---|
English | Free Fall Equation (Air Drag) |
Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass. |
Statements
0 references
0 references
P842 (Deleted Property)
0 Property P842 not found, cannot determine the data type to use.
0 references