test (Q16): Difference between revisions

From MaRDI portal
Changed claim: defining formula (P29): \begin{align} \frac{\mathrm d}{\mathrm d z} \psi_\mathbf{g}(z) &= 2\mathrm{i} \pi s_\mathbf{g} \psi_\mathbf{g}(z)+ \frac{\mathrm{i} \pi}{\rho_\mathbf{g}}\sum_{\mathbf{h}\in \Lambda^*_m} U_{\mathbf{g-h}}\psi_\mathbf{h}(z)\\ \quad s_g &= -\frac{g\cdot(2k_0+g)}{2n\cdot(k_0+g)}\end{align}
Changed claim: defining formula (P29): \begin{align} \frac{\mathrm d}{\mathrm d z} \psi_\mathbf{g}(z) &= 2\mathrm{i} \pi s_\mathbf{g} \psi_\mathbf{g}(z)+ \frac{\mathrm{i} \pi}{\rho_\mathbf{g}}\sum_{\mathbf{h}\in \Lambda^*_m} U_{\mathbf{g-h}}\psi_\mathbf{h}(z)\\ \quad s_g &= -\frac{g\cdot(2k_0+g)}{2n\cdot(k_0+g)}\end{align}
Property / defining formulaProperty / defining formula

ddzψ𝐠(z)=2iπs𝐠ψ𝐠(z)+iπρ𝐠𝐡Λm*U𝐠𝐡ψ𝐡(z)sgamp;=g(2k0+g)2n(k0+g)

\begin{align} \frac{\mathrm d}{\mathrm d z} \psi_\mathbf{g}(z) &= 2\mathrm{i} \pi s_\mathbf{g} \psi_\mathbf{g}(z)+ \frac{\mathrm{i} \pi}{\rho_\mathbf{g}}\sum_{\mathbf{h}\in \Lambda^*_m} U_{\mathbf{g-h}}\psi_\mathbf{h}(z)\\ \quad s_g &= -\frac{g\cdot(2k_0+g)}{2n\cdot(k_0+g)}\end{align}

ddzψ𝐠(z)=2iπs𝐠ψ𝐠(z)+iπρ𝐠𝐡Λm*U𝐠𝐡ψ𝐡(z)sg=g(2k0+g)2n(k0+g)

\begin{align} \frac{\mathrm d}{\mathrm d z} \psi_\mathbf{g}(z) &= 2\mathrm{i} \pi s_\mathbf{g} \psi_\mathbf{g}(z)+ \frac{\mathrm{i} \pi}{\rho_\mathbf{g}}\sum_{\mathbf{h}\in \Lambda^*_m} U_{\mathbf{g-h}}\psi_\mathbf{h}(z)\\ \quad s_g &= -\frac{g\cdot(2k_0+g)}{2n\cdot(k_0+g)}\end{align}

Revision as of 15:51, 21 February 2025

description
Language Label Description Also known as
English
test
description

    Statements

    1 January 1970
    0 references
    ddzψ𝐠(z)=2iπs𝐠ψ𝐠(z)+iπρ𝐠𝐡Λm*U𝐠𝐡ψ𝐡(z)sg=g(2k0+g)2n(k0+g)
    0 references