Mathematical Model Collection Template: Difference between revisions

From MaRDI portal
No edit summary
No edit summary
Line 98: Line 98:
Description: Dirichlet boundary conditions to apply gate voltages<br />
Description: Dirichlet boundary conditions to apply gate voltages<br />
Defining formulation:<br />
Defining formulation:<br />
<math>\Phi(\boldsymbol{r},t)|</math>_<math>{\Gamma_k} = U_k^{tot}(t)</math>
<math>\Phi(\boldsymbol{r},t)|\_{\Gamma_k} = U_k^{tot}(t)</math>
{| class="wikitable"
{| class="wikitable"
! Symbol
! Symbol

Revision as of 14:14, 12 April 2024

Title: "Model for Electric Potential for Gate Electrodes in a Quantum Bus"

Authors:

  • family-names: Koprucki

given-names: Thomas
orcid: https://orcid.org/0000-0001-6235-9412

  • family-names: Shehu

given-names: Aurela
orcid: https://orcid.org/0000-0002-1994-0612

Date-Released: 2024-04-05
Version: 1.0.0

Mathematical Model MM1: Electron Shuttling Model

Description: The gate electrodes form an electric potential landscape that generates an array of QDs in the QW. Suitable pulsing allows to propagate the QDs along the channel and thus enables conveyor-mode shuttling. As the device is operated at deep cryogenic temperature (50 mK), there exist no thermally activated electrons in the conduction band and space charge regions can be safely neglected. In this case, the electric potential Φ(r,t) obeys the homogeneous Poisson equation.

Properties: Is Deterministic, Is Space-Continous, Is Time-Continous, Is Linear

List of Mathematical Formulations

F1: Poisson's equation

Description: homogeneous Poisson's equation for electric potential
Defining formulation:
(ε(r)Φ(r,t))=0

Symbol Quantity Quantity Id Quantity Kind Quant. Kind Id Description
Φ - - Electric Potential Q55451 time-dependent profile of the electric potential in the quantum bus
ε - - Permittivity Q211569 static dielectric permittivity of a material
r - - Position Q192388 position vector used for description of fields
t - - Time Q11471 time

F2: Permittivity law

Description: definition of static dielectric permittivity of a material by the relative permittivity
DefiningFormulation:
ε(r)=ε0εr(r)

Symbol Quantity Quantity Id Quantity Kind Quant. Kind Id Description
ε0 Vacuum Permittivity Q6158 Permittivity Q211569 absolute dielectric permittivity of classical vacuum
εr Relative Permittivity Q4027242 Dimensionless quantity Q126818 relative permittivity of a material

Relations to other Mathematical Formulations:
F2 Contained as Definition In F1

F3: Boundary condition for electrode interfaces

Description: Dirichlet boundary conditions to apply gate voltages
Defining formulation:
Φ(r,t)|_Γk=Uktot(t)

Symbol Quantity Quantity Id Quantity Kind Quant. Kind Id Description
Γk Electrode interface TBD Physical Surface Q3783831 Interface between gate electrode k and device
Uktot Gate Voltage TBD Voltage Q25428 time-dependent applied voltage at gate electrode k
k Electrode Index TBD - - Index of the set of electrodes

Relations to other Mathematical Formulations:
F3 Contained as Boundary Condition In F1

F4: Boundary condition for artificial boundary

Description: homogenoues Neumann boundary conditions at artificial boundary
Defining formulation:
nΦ(r,t)|ΓN=0

Symbol Quantity Quantity Id Quantity Kind Quant. Kind Id Description
n Normal vector Q56353263 Normal Q273176 Normal to boundary surface
ΓN Artificial Boundary TBD Physical Surface Q3783831 Remaining artificial boundary

Relations to other Mathematical Formulations:
F4 Contained as Boundary Condition In F1


Computational Task CT1: Calculation of the electric potential

Description:
For a given set of gate voltages entering the boundary condition F3, solve the Poisson equation F1 with the material law F2 together with the boundary conditions F3 and F4. The device structure enters the material law F2 by the spatial profile of the relative permittivity ε(r).
Formulations: F1, F2, F3, F4
Input: Uktot, k = 1:6, F2
Output: Φ

Relations between Mathematical Formulations and Computational Tasks:
F2 Contained As Assumption In CT1.
F3 Contained As Boundary Condition In CT1.
F4 Contained As Boundary Condition In CT1.

Publication

P1: WIAS-Preprint 3082

DOI: 10.20347/WIAS.PREPRINT.3082

Relations between Mathematical Model and Publication:

MM1 Used In P1

Relations between Computational Task and Publication:

CT1 Documented In P1

Research Field

RF1: Semiconductor Physics

WikiData: Q4483523

Research Problem

RP1: Electrostatics in a Si/SiGe quantum bus

Description: Simulation of the electrostatics in a Si/SiGe quantum bus