Model for Electric Potential for Gate Electrodes in a Quantum Bus (1): Difference between revisions

From MaRDI portal
No edit summary
No edit summary
Line 14: Line 14:


= Mathematical Model MM1: Electron Shuttling Model =
= Mathematical Model MM1: Electron Shuttling Model =
 
<!--
Description: The gate electrodes form an electric potential landscape that generates an array of QDs in the QW. Suitable pulsing allows to propagate the QDs along the channel and thus enables conveyor-mode shuttling. As the device is operated at deep cryogenic temperature (50 mK), there exist no thermally activated electrons in the conduction band and space charge regions can be safely neglected. In this case, the electric  
Description: The gate electrodes form an electric potential landscape that generates an array of QDs in the QW. Suitable pulsing allows to propagate the QDs along the channel and thus enables conveyor-mode shuttling. As the device is operated at deep cryogenic temperature (50 mK), there exist no thermally activated electrons in the conduction band and space charge regions can be safely neglected. In this case, the electric potential <math>\Phi(r, t)</math> obeys the homogeneous Poisson equation.
potential <!--<math>\Phi(r, t)</math>--> obeys the homogeneous Poisson equation.


Properties: Is Deterministic, Is Space-Continous, Is Time-Continous, Is Linear
Properties: Is Deterministic, Is Space-Continous, Is Time-Continous, Is Linear
Line 26: Line 25:
Description: homogeneous Poisson's equation for electric potential<br />
Description: homogeneous Poisson's equation for electric potential<br />
Defining formulation:<br />
Defining formulation:<br />
<!--<math>-\nabla \cdot ( \varepsilon(\boldsymbol{r}) \nabla \Phi(\boldsymbol{r},t)) = 0</math>-->
<math>-\nabla \cdot ( \varepsilon(\boldsymbol{r}) \nabla \Phi(\boldsymbol{r},t)) = 0</math>
{| class="wikitable"
{| class="wikitable"
! Symbol
! Symbol
Line 35: Line 34:
! Description
! Description
|-
|-
| <!--<math>\Phi</math>-->
| <math>\Phi</math>
| -
| -
| -  
| -  
Line 42: Line 41:
| time-dependent profile of the electric potential in the quantum bus
| time-dependent profile of the electric potential in the quantum bus
|-
|-
| <!--<math>\varepsilon</math>-->
| <math>\varepsilon</math>
| -
| -
| -
| -
Line 49: Line 48:
| static dielectric permittivity of a material
| static dielectric permittivity of a material
|-
|-
| <!--<math>\boldsymbol{r}</math>-->
| <math>\boldsymbol{r}</math>
| -
| -
| -
| -
Line 56: Line 55:
| position vector used for description of fields
| position vector used for description of fields
|-
|-
| <!--<math>t</math>-->
| <math>t</math>
| -
| -
| -
| -
Line 68: Line 67:
Description: definition of static dielectric permittivity of a material by the relative permittivity<br />
Description: definition of static dielectric permittivity of a material by the relative permittivity<br />
DefiningFormulation:<br />
DefiningFormulation:<br />
<!--<math>\varepsilon(\boldsymbol{r}) = \varepsilon_0 \varepsilon_r(\boldsymbol{r})</math>-->
<math>\varepsilon(\boldsymbol{r}) = \varepsilon_0 \varepsilon_r(\boldsymbol{r})</math>
{| class="wikitable"
{| class="wikitable"
! Symbol
! Symbol
Line 77: Line 76:
! Description
! Description
|-
|-
| <!--<math>\varepsilon_0</math>-->
| <math>\varepsilon_0</math>
| Vacuum Permittivity
| Vacuum Permittivity
| Q6158
| Q6158
Line 84: Line 83:
| absolute dielectric permittivity of classical vacuum
| absolute dielectric permittivity of classical vacuum
|-
|-
| <!--<math>\varepsilon_r</math>-->
| <math>\varepsilon_r</math>
| Relative Permittivity
| Relative Permittivity
| Q4027242
| Q4027242
Line 99: Line 98:
Description: Dirichlet boundary conditions to apply gate voltages<br />
Description: Dirichlet boundary conditions to apply gate voltages<br />
Defining formulation:<br />
Defining formulation:<br />
<!--<math>\Phi(\boldsymbol{r},t)|_{\Gamma_k} = U_k^{tot}(t)</math>-->
<math>\Phi(\boldsymbol{r},t)|_{\Gamma_k} = U_k^{tot}(t)</math>
{| class="wikitable"
{| class="wikitable"
! Symbol
! Symbol
Line 108: Line 107:
! Description
! Description
|-
|-
| <!--<math>\Gamma_k</math>-->
| <math>\Gamma_k</math>
| Electrode interface
| Electrode interface
| TBD
| TBD
Line 115: Line 114:
| Interface between gate electrode <math>k</math> and device
| Interface between gate electrode <math>k</math> and device
|-
|-
| <!--<math>U_k^{tot}</math>-->
| <math>U_k^{tot}</math>
| Gate Voltage
| Gate Voltage
| TBD
| TBD
| Voltage
| Voltage
| Q25428
| Q25428
| time-dependent applied voltage at gate electrode <!--<math>k</math>-->
| time-dependent applied voltage at gate electrode <math>k</math>
|-
|-
| <!--<math>k</math>-->
| <math>k</math>
| Electrode Index  
| Electrode Index  
| TBD  
| TBD  
Line 137: Line 136:
Description: homogenoues Neumann boundary conditions at artificial boundary<br />
Description: homogenoues Neumann boundary conditions at artificial boundary<br />
Defining formulation:<br />
Defining formulation:<br />
<!--<math>\boldsymbol{n} \cdot \nabla \Phi(\boldsymbol{r},t)|_{\Gamma_N} = 0</math>-->
<math>\boldsymbol{n} \cdot \nabla \Phi(\boldsymbol{r},t)|_{\Gamma_N} = 0</math>
{| class="wikitable"
{| class="wikitable"
! Symbol
! Symbol
Line 146: Line 145:
! Description
! Description
|-
|-
| <!--<math>\boldsymbol{n}</math>-->
| <math>\boldsymbol{n}</math>
| Normal vector  
| Normal vector  
| Q56353263
| Q56353263
Line 153: Line 152:
| Normal to boundary surface
| Normal to boundary surface
|-
|-
| <!--<math>\Gamma_N</math>-->
| <math>\Gamma_N</math>
| Artificial Boundary
| Artificial Boundary
| TBD
| TBD
Line 168: Line 167:


Description:<br />
Description:<br />
For a given set of gate voltages entering the boundary condition F3, solve the Poisson equation F1 with the material law F2 together with the boundary conditions F3 and F4. The device structure enters the material law F2 by the spatial profile of the relative permittivity <!--<math>\varepsilon(\boldsymbol{r})</math>-->.<br />
For a given set of gate voltages entering the boundary condition F3, solve the Poisson equation F1 with the material law F2 together with the boundary conditions F3 and F4. The device structure enters the material law F2 by the spatial profile of the relative permittivity <math>\varepsilon(\boldsymbol{r})</math>.<br />
Formulations: F1, F2, F3, F4<br />
Formulations: F1, F2, F3, F4<br />
Input: <!--<math>U^{tot}_k</math>-->, k = 1:6, F2<br />
Input: <math>U^{tot}_k</math>, k = 1:6, F2<br />
Output: <!--<math>\Phi</math>-->
Output: <math>\Phi</math>
 
-->
Relations between Mathematical Formulations and Computational Tasks:<br />
Relations between Mathematical Formulations and Computational Tasks:<br />
F2 Contained As Assumption In CT1.<br />
F2 Contained As Assumption In CT1.<br />
Line 183: Line 182:


DOI: 10.20347/WIAS.PREPRINT.3082
DOI: 10.20347/WIAS.PREPRINT.3082
-->
 
== Relations between Mathematical Model and Publication: ==
== Relations between Mathematical Model and Publication: ==



Revision as of 10:28, 15 April 2024

Title: "Model for Electric Potential for Gate Electrodes in a Quantum Bus"

Authors:

  • family-names: Koprucki

given-names: Thomas
orcid: https://orcid.org/0000-0001-6235-9412

  • family-names: Shehu

given-names: Aurela
orcid: https://orcid.org/0000-0002-1994-0612

Date-Released: 2024-04-05
Version: 1.0.0

Mathematical Model MM1: Electron Shuttling Model

Relations between Mathematical Formulations and Computational Tasks:
F2 Contained As Assumption In CT1.
F3 Contained As Boundary Condition In CT1.
F4 Contained As Boundary Condition In CT1.

Publication

P1: WIAS-Preprint 3082

DOI: 10.20347/WIAS.PREPRINT.3082

Relations between Mathematical Model and Publication:

MM1 Used In P1

Relations between Computational Task and Publication:

CT1 Documented In P1

Research Field

RF1: Semiconductor Physics

WikiData: Q4483523

Research Problem

RP1: Electrostatics in a Si/SiGe quantum bus

Description: Simulation of the electrostatics in a Si/SiGe quantum bus