Free Fall Equation (Air Drag) (Q3836): Difference between revisions

From MaRDI portal
Changed claim: defining formula (P29): \begin{aligned} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned}
Tag: Reverted
Changed claim: defining formula (P29): \begin{aligned} m\dot{v}&=&mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=&y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned}
Tag: Manual revert
Property / defining formulaProperty / defining formula

mv˙=mg12ρCDAv2y(t)=y0+v0tv2glncosh(gtv)

\begin{aligned} m\dot{v}&=mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned}

mv˙=mg12ρCDAv2y(t)=y0+v0tv2glncosh(gtv)

\begin{aligned} m\dot{v}&=&mg-\frac{1}{2}\rho C_DAv^2 \\ y(t)&=&y_0+v_0t-\frac{v_\infty^2}{g}\ln\cosh\left(\frac{gt}{v_\infty}\right) \end{aligned}

Revision as of 15:46, 30 September 2024

Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.
Language Label Description Also known as
default for all languages
No label defined
    English
    Free Fall Equation (Air Drag)
    Modeling the fall of objects by the laws of classical mechanics, including the aerodynamic drag and assuming a uniform gravitational field. Moreover, assuming the falling object to be a point mass.

      Statements

      Q3832 (Deleted Item)
      0 references
      mv˙=mg12ρCDAv2y(t)=y0+v0tv2glncosh(gtv)
      0 references
      y(t)=y0+v0tv2glncosh(gtv)
      0 references
      0 references
      P842 (Deleted Property)
      0 Property P842 not found, cannot determine the data type to use.
      0 references
      P853 (Deleted Property)
      The value is invalid and cannot be displayed. Property P853 not found, cannot determine the data type to use.
      0 references

      Identifiers

      0 references