Free Fall Time (Q4496): Difference between revisions

From MaRDI portal
Created claim: defining formula (P29): t(y)= \sqrt{ \frac{ {y_0}^3 }{2\mu} } \left(\sqrt{\frac{y}{y_0}\left(1-\frac{y}{y_0}\right)} + \arccos{\sqrt{\frac{y}{y_0}}} \right)
Changed claim: defining formula (P29): t(y)= \sqrt{ \frac{ {y_0}^3 }{2G(m+M} } \left(\sqrt{\frac{y}{y_0}\left(1-\frac{y}{y_0}\right)} + \arccos{\sqrt{\frac{y}{y_0}}} \right)
Tag: Reverted
Property / defining formulaProperty / defining formula

t(y)= \sqrt{ \frac{ {y_0}^3 }{2\mu} } \left(\sqrt{\frac{y}{y_0}\left(1-\frac{y}{y_0}\right)} + \arccos{\sqrt{\frac{y}{y_0}}} \right)

t(y)= \sqrt{ \frac{ {y_0}^3 }{2G(m+M} } \left(\sqrt{\frac{y}{y_0}\left(1-\frac{y}{y_0}\right)} + \arccos{\sqrt{\frac{y}{y_0}}} \right)

Revision as of 19:52, 5 December 2024

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.
Language Label Description Also known as
English
Free Fall Time
The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.

    Statements

    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references