Evolution in interacting species alters predator life history traits, behavior and morphology in experimental microbial communities (Q9369)

From MaRDI portal
Revision as of 15:39, 20 February 2025 by Importer (talk | contribs) (‎Created a new Item)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Dataset published at Zenodo repository.
Language Label Description Also known as
English
Evolution in interacting species alters predator life history traits, behavior and morphology in experimental microbial communities
Dataset published at Zenodo repository.

    Statements

    0 references
    Predator-prey interactions are key for the dynamics of many ecosystems. An increasing body of evidence suggests that rapid evolution and co-evolution can alter these interactions, with important ecological implications, by acting on traits determining fitness, including reproduction, anti-predatory defense and foraging efficiency. However, most studies to date have focused only on evolution in the prey species, and the predator traits in (co-)evolving systems remain poorly understood. Here we investigated changes in predator traits after ~600 generations in a predator-prey (ciliate-bacteria) evolutionary experiment. Predators independently evolved on seven different prey species, allowing generalization of the predator's evolutionary response. We used highly resolved automated image analysis to quantify changes in predator life history, morphology and behavior. Consistent with previous studies, we found that prey evolution impaired growth of the predator, although the effect depended on the prey species. In contrast, predator evolution did not cause a clear increase in predator growth when feeding on ancestral prey. However, predator evolution affected morphology and behavior, increasing size, speed and directionality of movement, which have all been linked to higher prey search efficiency. These results show that in (co-)evolving systems, predator adaptation can occur in traits relevant to foraging efficiency without translating into an increased ability of the predator to grow on the ancestral prey type.
    0 references
    5 May 2020
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references